Attention, exhaustivity and non-cooperativity

Matthijs Westera

Institute for Logic, Language and Computation University of Amsterdam

Göttingen, October $6^{\text {th }} 2013$

Two puzzles

(1) Of John, Bill and Mary, who came to the party?
a. John came \downarrow. \sim Mary and Bill didn't.

Two puzzles

(1) Of John, Bill and Mary, who came to the party?
a. John came \downarrow. \sim Mary and Bill didn't.

Two puzzles

(1) Of John, Bill and Mary, who came to the party?
a. John came $\downarrow . ~ \sim$ Mary and Bill didn't.
b. John came \nearrow.

Two puzzles

(1) Of John, Bill and Mary, who came to the party?
a. John came \downarrow. \leadsto Mary and Bill didn't.
b. John came \nearrow.
\leadsto...wait, there's more.

Two puzzles

(1) Of John, Bill and Mary, who came to the party?
a. John came \downarrow. \leadsto Mary and Bill didn't.
b. John came \nearrow.
\leadsto...wait, there's more.
\leadsto...perhaps that implies sth. about M\&B?

Two puzzles

(1) Of John, Bill and Mary, who came to the party?
a. John came $\downarrow . ~ \leadsto$ Mary and Bill didn't.
b. John came \nearrow.
\leadsto...wait, there's more.
$\leadsto \ldots$ perhaps that implies sth. about M\&B?
\leadsto...but I'm not sure.

Two puzzles

(1) Of John, Bill and Mary, who came to the party?
a. John came $\downarrow . ~ \leadsto$ Mary and Bill didn't.
b. John came \nearrow.
\leadsto...wait, there's more.
$\leadsto \ldots$ perhaps that implies sth. about M\&B?
\leadsto...but I'm not sure.
\leadsto...did I make myself clear?

Two puzzles

(1) Of John, Bill and Mary, who came to the party?
a. John came \downarrow. \sim Mary and Bill didn't.
b. John came \nearrow.
\leadsto...wait, there's more.
$\leadsto \ldots$ perhaps that implies sth. about M\&B?
\leadsto...but I'm not sure.
\leadsto...did I make myself clear?

Two puzzles

the oldest problem in pragmatics?
(1) Of John, Bill and Mary, who came to the party? a. John came». \sim Mary and Bill didn't.
b. John came \nearrow.
\leadsto...wait, there's more.
\leadsto...perhaps that implies sth. about M\&B?
\leadsto...but I'm not sure.
\leadsto...did I make myself clear?

Two puzzles

the oldest problem in pragmatics?
(1) Of John, Bill and Mary, who came to the party? a. John came». \sim Mary and Bill didn't.
b. John came \nearrow.
\leadsto...wait, there's more.
$\leadsto \ldots$ perhaps that implies sth. about M\&B?
$\leadsto \ldots$...but I'm not sure.
\leadsto...did I make myself clear?
'In common conversation the confirmation of a part is meant to imply the denial of the remainder.'
(De Morgan, 1847)

Two puzzles

the oldest problem in pragmatics?
(1) Of John, Bill and Mary, who came to the party? a. John came». \sim Mary and Bill didn't.
b. John came π.
\leadsto...wait, there's more.
\leadsto...perhaps that implies sth. about M\&B?
\leadsto...but I'm not sure.
\leadsto...did I make myself clear?
evoked questions
'In common conversation the confirmation of a part is meant to imply the denial of the remainder.'
(De Morgan, 1847)

Part I

1. Diagnosis
2. Theory
3. Results
4. Discussion

1. Diagnosis

1.1. The problem
1.2. Existing approaches
1.3. Towards a solution

1.1. The problem

(1) Of John, Bill and Mary, who came to the party? a. John came $\downarrow . ~ \sim ~ M a r y ~ a n d ~ B i l l ~ d i d n ' t . ~(e x h a u s t i v i t y) ~$

1.1. The problem

(1) Of John, Bill and Mary, who came to the party?
a. John came $\downarrow . ~ \leadsto ~ M a r y ~ a n d ~ B i l l ~ d i d n ' t . ~(e x h a u s t i v i t y) ~$

Conversational implicature (Grice, 1975)
An implicature, the supposition of which is necessary for maintaining the assumption that the speaker is cooperative.

1.1. The problem

(1) Of John, Bill and Mary, who came to the party?
a. John came $\downarrow . ~ \leadsto ~ M a r y ~ a n d ~ B i l l ~ d i d n ' t . ~(e x h a u s t i v i t y) ~$

Conversational implicature (Grice, 1975)
An implicature, the supposition of which is necessary for maintaining the assumption that the speaker is cooperative.

1. Had sp. believed Mary or Bill came, she should have said so.

1.1. The problem

(1) Of John, Bill and Mary, who came to the party?
a. John came $\searrow . ~ \leadsto ~ M a r y ~ a n d ~ B i l l ~ d i d n ' t . ~(e x h a u s t i v i t y) ~$

Conversational implicature (Grice, 1975)
An implicature, the supposition of which is necessary for maintaining the assumption that the speaker is cooperative.

1. Had sp. believed Mary or Bill came, she should have said so.
2. She didn't, so she lacks the belief that they came.

1.1. The problem

(1) Of John, Bill and Mary, who came to the party?
a. John came】. \sim Mary and Bill didn't. (exhaustivity)

Conversational implicature (Grice, 1975)
An implicature, the supposition of which is necessary for maintaining the assumption that the speaker is cooperative.

1. Had sp. believed Mary or Bill came, she should have said so.
2. She didn't, so she lacks the belief that they came.
3. She believes that they didn't come.

1.1. The problem

(1) Of John, Bill and Mary, who came to the party?
a. John came $\searrow . ~ \leadsto ~ M a r y ~ a n d ~ B i l l ~ d i d n ' t . ~(e x h a u s t i v i t y) ~$

Conversational implicature (Grice, 1975)
An implicature, the supposition of which is necessary for maintaining the assumption that the speaker is cooperative.

1. Had sp. believed Mary or Bill came, she should have said so.
2. She didn't, so she lacks the belief that they came.
... ('the epistemic step' - Sauerland, 2004)
3. She believes that they didn't come.

1.1. The problem

(1) Of John, Bill and Mary, who came to the party?
a. John came】. \sim Mary and Bill didn't. (exhaustivity)

Conversational implicature (Grice, 1975)

An implicature, the supposition of which is necessary for maintaining the assumption that the speaker is cooperative.

1. Had sp. believed Mary or Bill came, she should have said so.
2. She didn't, so she lacks the belief that they came.
... ('the epistemic step' - Sauerland, 2004)
3. She believes that they didn't come.
"[the epistemic] step does not follow from
Gricean maxims and logic alone." - Chierchia, et al. (2008)

1.1. The problem

(1) Of John, Bill and Mary, who came to the party?
a. John came】. \sim Mary and Bill didn't. (exhaustivity)

Conversational implicature (Grice, 1975)

An implicature, the supposition of which is necessary for maintaining the assumption that the speaker is cooperative.

1. Had sp. believed Mary or Bill came, she should have said so.
2. She didn't, so she lacks the belief that they came.
... ('the epistemic step' - Sauerland, 2004)
3. She believes that they didn't come.
"[the epistemic] step does not follow from
Glicean maxims and logic alone." - Chierchia, et al. (2008)
Wrong, it does!

1.2. Existing approaches

Most existing work (going back to Mill, 1867):

1.2. Existing approaches

Most existing work (going back to Mill, 1867):

1. The speaker lacks the belief that Mary came

1.2. Existing approaches

Most existing work (going back to Mill, 1867):

1. The speaker lacks the belief that Mary came
(Quantity)
2. She is opinionated about whether Mary came

1.2. Existing approaches

Most existing work (going back to Mill, 1867):

1. The speaker lacks the belief that Mary came
2. She is opinionated about whether Mary came
3. She believes that Mary didn't come

1.2. Existing approaches

Most existing work (going back to Mill, 1867):

1. The speaker lacks the belief that Mary came
2. She is opinionated about whether Mary came

3. She believes that Mary didn't come

1.2. Existing approaches

Most existing work (going back to Mill, 1867):

1. The speaker lacks the belief that Mary came
2. She is opinionated about whether Mary came

3. She believes that Mary didn't come

- What warrants the opinionatedness assumption?

1.2. Existing approaches

Most existing work (going back to Mill, 1867):

1. The speaker lacks the belief that Mary came
2. She is opinionated about whether Mary came
3. She believes that Mary didn't come

- What warrants the opinionatedness assumption?
- It is empirically inadequate:
(5) I'm asking the wrong person, but who came to the party? John and Bill came. \leadsto Not Mary.

1.2. Existing approaches

Most existing work (going back to Mill, 1867):

1. The speaker lacks the belief that Mary came
2. She is opinionated about whether Mary came
3. She believes that Mary didn't come

- What warrants the opinionatedness assumption?
- It is empirically inadequate:
(5) I'm asking the wrong person, but who came to the party? John and Bill came. \leadsto Not Mary.
- Opinionatedness must be something conveyed by the speaker.

1.2. Existing approaches

Most existing work (going back to Mill, 1867):

1. The speaker lacks the belief that Mary came
2. She is opinionated about whether Mary came
3. She believes that Mary didn't come

- What warrants the opinionatedness assumption?
- It is empirically inadequate:
(5) I'm asking the wrong person, but who came to the party? John and Bill came. \leadsto Not Mary.
- Opinionatedness must be something conveyed by the speaken

1.3. Towards a solution

(2) a. Of John, Bill and Mary, who came to the party?
b. John came.
\leadsto Mary didn't come

1.3. Towards a solution

(2) a. Of John, Bill and Mary, who came to the party?
b. John came.
\leadsto Mary didn't come
c. John came, or Mary and John.
$\psi>$ Mary didn't come

1.3. Towards a solution

(2) a. Of John, Bill and Mary, who came to the party?
b. John came.
\leadsto Mary didn't come
c. John came, or Mary and John.
$\psi>$ Mary didn't come
Intuition
(2b) and (2c) differ in their attentive content.

1.3. Towards a solution

(2) a. Of John, Bill and Mary, who came to the party?
b. John came.
\leadsto Mary didn't come
c. John came, or Mary and John.
*s Mary didn't come

Intuition

(2b) and (2c) differ in their attentive content.

- (2c) draws attention to the poss. that Mary came too.

1.3. Towards a solution

(2) a. Of John, Bill and Mary, who came to the party?
b. John came.
\leadsto Mary didn't come
c. John came, or Mary and John.
*s Mary didn't come

Intuition

(2b) and (2c) differ in their attentive content.

- (2c) draws attention to the poss. that Mary came too.
- (And so does (2a).)

1.3. Towards a solution

(2) a. Of John, Bill and Mary, who came to the party?
b. John came.
\leadsto Mary didn't come
c. John came, or Mary and John.
*s Mary didn't come

Intuition

(2b) and (2c) differ in their attentive content.

- (2c) draws attention to the poss. that Mary came too.
- (And so does (2a).)
- (2b) doesn't; it leaves the possibility unattended.

1.3. Towards a solution

(2) a. Of John, Bill and Mary, who came to the party?
b. John came.
\leadsto Mary didn't come
c. John came, or Mary and John.
*s Mary didn't come

Intuition

(2b) and (2c) differ in their attentive content.

- (2c) draws attention to the poss. that Mary came too.
- (And so does (2a).)
- (2b) doesn't; it leaves the possibility unattended.

Apparently, pragmatic reasoning is sensitive to this.

1.3. Towards a solution

(2) a. Of John, Bill and Mary, who came to the party?
b. John came.
\leadsto Mary didn't come
c. John came, or Mary and John.
*s Mary didn't come

Intuition

(2b) and (2c) differ in their ttentive content.

- (2c) draws attention to the poss. that Mary came too.
- (And so does (2a).)
- (2b) doesn't; it leaves the possibility unattended.

Apparently, pragmatic reasoning is sensitive to this.

1.3. Towards a solution

(2) a. Of John, Bill and Mary, who came to the party?
b. John came.
\leadsto Mary didn't come
c. John came, or Mary and John.
*s Mary didn't come

Intuition

(2b) and (2c) differ in their ttentive content.

- (2c) draws attention to the poss. that Mary came too.
- (And so does (2a).)
- (2b) doesn't; it leaves the possibility unattended.

Apparently, pragmatic reasoning is sensitive to this.

1.3. Towards a solution

(2) a. Of John, Bill and Mary, who came to the party?
b. John came.
\leadsto Mary didn't come
c. John came, or Mary and John.
*s Mary didn't come
Intuition a richer
(2b) and (2c) differ in their ttentive content. semantics

- (2c) draws attention to the poss. that Mary came too.
- (And so does (2a).)
- (2b) doesn't; it leaves the possibility unattended.

Apparently, pragmatic reasoning is sensitive to this.

1.3. Towards a solution

(2) a. Of John, Bill and Mary, who came to the party?
b. John came.
\leadsto Mary didn't come
c. John came, or Mary and John.

* Mary didn't come

Intuition a richer
(2b) and (2c) differ in their ttentive content. semantics

- (2c) draws attention to the poss. that Mary came too.
- (And so does (2a).)
- (2b) doesn't; it leaves the possibility unattended.

Apparently, pragmatic reasoning issensitive to this. maxim of Relation

2. Theory

2.1. Translation into logic
2.2. Semantics
2.3. Pragmatics

2.1. Translation into logic

(3) a. Of John, Bill and Mary, who came to the party?
b. John came.
c. John came, or Mary and John.
\leadsto Mary didn't come
\& Mary didn't come

2.1. Translation into logic

(3) a. Of John and Mary, who came to the party?
b. John came.
c. John came, or Mary and John.
\leadsto Mary didn't come
\& Mary didn't come

2.1. Translation into logic

(3) a. Of John and Mary, some came to the party.
b. John came.
c. John came, or Mary and John.
\leadsto Mary didn't come
ψ Mary didn't come

2.1. Translation into logic

(3) a. John came, or Mary, or John and Mary.
b. John came.
c. John came, or Mary and John.
\leadsto Mary didn't come
tr Mary didn't come

2.1. Translation into logic

(3) a. John came, or Mary, or John and Mary.
b. John came.
c. John came, or Mary and John.

2.1. Translation into logic

(3) a. John came, or Mary, or John and Mary.

$$
\begin{array}{r}
p \vee q \vee(p \wedge q) \\
p \\
p \vee(p \wedge q)
\end{array}
$$

b. John came.
2.2. Semantics (Roelofsen, 2011)

2.2. Semantics (Roelofsen, 2011)

- Possibility: a set of worlds (a, b)

2.2. Semantics (Roelofsen, 2011)

- Possibility: a set of worlds (a, b)
- Proposition: a set of possibilities $(A, B,[\varphi])$

2.2. Semantics (Roelofsen, 2011)

- Possibility: a set of worlds (a, b)
- Proposition: a set of possibilities $(A, B,[\varphi])$
- Informative content: $|\varphi|:=\bigcup[\varphi]$

2.2. Semantics (Roelofsen, 2011)

- Possibility: a set of worlds (a, b)
- Proposition: a set of possibilities $(A, B,[\varphi])$
- Informative content: $|\varphi|:=\bigcup[\varphi]$
(3a) $[p \vee q \vee(p \wedge q)]$
(3b) $[p]$
(3c) $[p \vee(p \wedge q)]$
2.2. Semantics (Roelofsen, 2011)
- Possibility: a set of worlds (a, b)
- Proposition: a set of possibilities $(A, B,[\varphi])$
- Informative content: $|\varphi|:=\bigcup[\varphi]$

(3a) $[p \vee q \vee(p \wedge q)]$
(3b) $[p]$

(3c) $[p \vee(p \wedge q)]$
2.2. Semantics (Roelofsen, 2011)
- Possibility: a set of worlds (a, b)
- Proposition: a set of possibilities $(A, B,[\varphi])$
- Informative content: $|\varphi|:=\bigcup[\varphi]$

(3a) $[p \vee q \vee(p \wedge q)]$
(3b) $[p]$
(3c) $[p \vee(p \wedge q)]$
Entailment
A entails $B, A \vDash B$, iff
(i) $\cup A \subseteq \cup B$; and
(ii) for all $b \in B$, if $b \cap \cup A \neq \varnothing, b \cap \cup A \in A$
2.2. Semantics (Roelofsen, 2011)
- Possibility: a set of worlds (a, b)
- Proposition: a set of possibilities $(A, B,[\varphi])$
- Informative content: $|\varphi|:=\bigcup[\varphi]$

(3a) $[p \vee q \vee(p \wedge q)]$
Entailment
A entails $B, A \vDash B$, iff
(i) $\cup A \subseteq \cup B$; and \longrightarrow at least as informative
(ii) for all $b \in B$, if $b \cap \cup A \neq \varnothing, b \cap \cup A \in A$
2.2. Semantics (Roelofsen, 2011)
- Possibility: a set of worlds (a, b)
- Proposition: a set of possibilities $(A, B,[\varphi])$
- Informative content: $|\varphi|:=\bigcup[\varphi]$

(3a) $[p \vee q \vee(p \wedge q)]$
Entailment
A entails $B, A \vDash B$, iff
(i) $\cup A \subseteq \cup B$; and
\longrightarrow at least as informative
(ii) for all $b \in B$, if $b \cap \cup A \neq \varnothing, b \cap \cup A \in A$
2.2. Semantics (Roelofsen, 2011)
- Possibility: a set of worlds (a, b)
- Proposition: a set of possibilities $(A, B,[\varphi])$
- Informative content: $|\varphi|:=\bigcup[\varphi]$

(3a) $[p \vee q \vee(p \wedge q)]$
Entailment
A entails $B, A \vDash B$, iff
(i) $\cup A \subseteq \cup B$; and
\longrightarrow at least as informative
(ii) for all $b \in B$, if $b \cap \cup A \neq \varnothing, b \cap \cup A \in A$

Now, (3c) $\vDash(3 a)$, but (3b) $\neq(3 a)$.

2.3. Pragmatics

The relevant maxims

1. Quality:
2. Quantity:
3. Relation:

2.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q :

1. Quality:
2. Quantity:
3. Relation:

2.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q :

1. Quality: $s \subseteq \cup R$.
2. Quantity:
3. Relation:

2.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q :

1. Quality: $s \subseteq \cup R$.
2. Quantity: For all $Q^{\prime} \subseteq Q$, if $s \subseteq \cup Q^{\prime}$ then $\cup R \subseteq \cup Q^{\prime}$.
3. Relation:

2.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q :

1. Quality: $s \subseteq \cup R$.
2. Quantity: For all $Q^{\prime} \subseteq Q$, if $s \subseteq \cup Q^{\prime}$ then $\cup R \subseteq \cup Q^{\prime}$.
3. Relation: $\{r \cap s \mid r \in R\} \vDash Q$.

2.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q :

1. Quality: $s \subseteq \cup R$.
2. Quantity: For all $Q^{\prime} \subseteq Q$, if $s \subseteq \cup Q^{\prime}$ then $\cup R \subseteq \cup Q^{\prime}$.
3. Relation: $\{r \cap s \mid r \in R\} \vDash Q$.
(4) Did John go to the party?

It was raining.

2.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q :

1. Quality: $s \subseteq \cup R$.
2. Quantity: For all $Q^{\prime} \subseteq Q$, if $s \subseteq \cup Q^{\prime}$ then $\cup R \subseteq \cup Q^{\prime}$.
3. Relation: $\{r \cap s \mid r \in R\} \vDash Q$.
(4) Did John go to the party? It was raining.

2.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q :

1. Quality: $s \subseteq \cup R$.
2. Quantity: For all $Q^{\prime} \subseteq Q$, if $s \subseteq \cup Q^{\prime}$ then $\cup R \subseteq \cup Q^{\prime}$.
3. Relation: $\{r \cap s \mid r \in R\} \vDash Q$.
(4) Did John go to the party? It was raining.

2.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q :

1. Quality: $s \subseteq \cup R$.
2. Quantity: For all $Q^{\prime} \subseteq Q$, if $s \subseteq \cup Q^{\prime}$ then $\cup R \subseteq \cup Q^{\prime}$.
3. Relation: $\{r \cap s \mid r \in R\} \vDash Q$.
(4) Did John go to the party? It was raining.

2.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q :

1. Quality: $s \subseteq \cup R$.
2. Quantity: For all $Q^{\prime} \subseteq Q$, if $s \subseteq \cup Q^{\prime}$ then $\cup R \subseteq \cup Q^{\prime}$.
3. Relation: $\{r \cap s \mid r \in R\} \vDash Q$.
(4) Did John go to the party? It was raining.

2.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q :

1. Quality: $s \subseteq \cup R$.
2. Quantity: For all $Q^{\prime} \subseteq Q$, if $s \subseteq \cup Q^{\prime}$ then $\cup R \subseteq \cup Q^{\prime}$.
3. Relation: $\{r \cap s \mid r \in R\} \vDash Q$.
(4) Did John go to the party? It was raining.

2.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q :

1. Quality: $s \subseteq \cup R$.
2. Quantity: For all $Q^{\prime} \subseteq Q$, if $s \subseteq \cup Q^{\prime}$ then $\cup R \subseteq \cup Q^{\prime}$.
3. Relation: $\{r \cap s \mid r \in R\} \vDash Q$.
(4) Did John go to the party?

It was raining. \leadsto If it rained, John $\{$ went / didn't go $\}$.

2.3. Pragmatics

The relevant maxims
For a cooperative speaker with information s, responding R to Q :

1. Quality: $s \subseteq \cup R$.
2. Quantity: For all $Q^{\prime} \subseteq Q$, if $s \subseteq \cup Q^{\prime}$ then $\cup R \subseteq \cup Q^{\prime}$.
3. Relation: $\{r \cap s \mid r \in R\} \vDash Q$.

3. Results

3.1. Examples
3.2. Formal results
3.3. And more conceptually...

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$ b. John came. (p)
c. John came, or Mary and John. $(p \vee(p \wedge q))$

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$
b. John came. (p)
c. John came, or Mary and John. $(p \vee(p \wedge q))$ 1. $s \subseteq|p \vee(p \wedge q)|$

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$
b. John came. (p)
c. John came, or Mary and John. $(p \vee(p \wedge q))$ 1. $s \subseteq|p \vee(p \wedge q)|=|p|$
(Quality)

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$ b. John came. (p)
c. John came, or Mary and John. $(p \vee(p \wedge q))$

1. $s \subseteq|p \vee(p \wedge q)|=|p|$
(Quality)
2. $s \nsubseteq|q|$
(Quantity)

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$ b. John came. (p)
c. John came, or Mary and John. $(p \vee(p \wedge q))$

1. $s \subseteq|p \vee(p \wedge q)|=|p|$
(Quality)
2. $s \nsubseteq|q|$

$$
p \vee(p \wedge q) \vDash p \vee q \vee(p \wedge q)
$$

(Quantity)

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$ b. John came. (p)
c. John came, or Mary and John. $(p \vee(p \wedge q))$

$$
\begin{aligned}
& \text { 1. } s \subseteq|p \vee(p \wedge q)|=|p| \\
& \text { 2. } s \nsubseteq|q| \\
& \text { 3. - } p \vee(p \wedge q) \vDash p \vee q \vee(p \wedge q)
\end{aligned}
$$

(Quality)
(Quantity)
(Relation)

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$
b. John came. (p)

1. $s \subseteq|p|$
(Quality)
c. John came, or Mary and John. $(p \vee(p \wedge q))$

$$
\begin{aligned}
& \text { 1. } s \subseteq|p \vee(p \wedge q)|=|p| \\
& \text { 2. } s \nsubseteq|q| \\
& \text { 3. - } \quad p \vee(p \wedge q) \vDash p \vee q \vee(p \wedge q)
\end{aligned}
$$

(Quality)
(Quantity)
(Relation)

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$
b. John came. (p)

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
(Quality)
(Quantity)
c. John came, or Mary and John. $(p \vee(p \wedge q))$
3. $s \subseteq|p \vee(p \wedge q)|=|p|$
(Quality)
4. $s \nsubseteq|q|$
5. -

$$
p \vee(p \wedge q) \vDash p \vee q \vee(p \wedge q)
$$

(Quantity)
(Relation)

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$
b. John came. (p)

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
$p \nLeftarrow!!!$
(Quality)
(Quantity)
c. John came, or Mary and John. $(p \vee(p \wedge q))$

$$
\begin{aligned}
& \text { 1. } s \subseteq|p \vee(p \wedge q)|=|p| \\
& \text { 2. } s \nsubseteq|q| \\
& \text { 3. - } \quad p \vee(p \wedge q) \vDash p \vee q \vee(p \wedge q)
\end{aligned}
$$

(Quality)
(Quantity)
(Relation)

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$
b. John came. (p)

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
$p \nLeftarrow!!!$
(Quality)
(Quantity)

c. John came, or Mary and John. $(p \vee(p \wedge q))$
3. $s \subseteq|p \vee(p \wedge q)|=|p|$
4. $s \nsubseteq|q|$
5. -

$$
p \vee(p \wedge q) \vDash p \vee q \vee(p \wedge q)
$$

(Quality)
(Quantity)
(Relation)

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$
b. John came. (p)

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
$p \nLeftarrow!!!$
(Quality)
(Quantity)

c. John came, or Mary and John. $(p \vee(p \wedge q))$
3. $s \subseteq|p \vee(p \wedge q)|=|p|$
4. $s \nsubseteq|q|$
5. -

$$
p \vee(p \wedge q] \vDash p \vee q \vee[p \wedge q]
$$

(Quality)
(Quantity)
(Relation)

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$
b. John came. (p)

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$

(Quality)
(Quantity)

c. John came, or Mary and John. $(p \vee(p \wedge q))$
3. $s \subseteq|p \vee(p \wedge q)|=|p|$
4. $s \nsubseteq|q|$
5. -

$$
p \vee(p \wedge q) \vDash p \vee q \vee(p \wedge q)
$$

(Quality)
(Quantity)
(Relation)

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$
b. John came. (p)

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
$p \nLeftarrow!!!$
(Quality)
(Quantity)

c. John came, or Mary and John. $(p \vee(p \wedge q))$
3. $s \subseteq|p \vee(p \wedge q)|=|p|$
4. $s \nsubseteq|q|$
5. -

$$
p \vee(p \wedge q) \vDash p \vee q \vee(p \wedge q)
$$

(Quality)
(Quantity)
(Relation)

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$
b. John came. (p)

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
$p \nLeftarrow!!!$
(Quality)
(Quantity)

c. John came, or Mary and John. $(p \vee(p \wedge q))$
3. $s \subseteq|p \vee(p \wedge q)|=|p|$
4. $s \nsubseteq|q|$
5. -

$$
p \vee(p \wedge q) \vDash p \vee q \vee(p \wedge q)
$$

(Quality)
(Quantity)
(Relation)

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$
b. John came. (p)

$$
\begin{aligned}
& \text { 1. } s \subseteq|p| \\
& \text { 2. } s \nsubseteq|q| \\
& \text { 3. } s \subseteq \frac{!!!}{|p|} \cup|q| \text { or } s \subseteq \overline{|p|} \cup \overline{|q|}
\end{aligned}
$$

(Quality)
(Quantity)
(Relation)
c. John came, or Mary and John. $(p \vee(p \wedge q))$

$$
\begin{aligned}
& \text { 1. } s \subseteq|p \vee(p \wedge q)|=|p| \\
& \text { 2. } s \nsubseteq|q| \\
& \text { 3. - } p \vee(p \wedge q) \vDash p \vee q \vee(p \wedge q)
\end{aligned}
$$

(Quality)
(Quantity)
(Relation)

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$
b. John came. (p)

$$
\begin{aligned}
& \text { 1. } s \subseteq|p| \\
& \text { 2. } s \nsubseteq|q| \\
& \text { 3. } s \subseteq|\overline{|p|} \cup| q \mid \text { or } s \subseteq \overline{|p|} \cup \overline{\nmid q \mid} p \vee q \vee(p \wedge q)
\end{aligned}
$$

(Quality)
(Quantity)
(Relation)
c. John came, or Mary and John. $(p \vee(p \wedge q))$

$$
\begin{aligned}
& \text { 1. } s \subseteq|p \vee(p \wedge q)|=|p| \\
& \text { 2. } s \nsubseteq|q| \\
& \text { 3. - } p \vee(p \wedge q) \vDash p \vee q \vee(p \wedge q)
\end{aligned}
$$

(Quality)
(Quantity)
(Relation)

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$
b. John came. (p)

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$

3. $s \subseteq \overline{|p|} \cup|q|$ or $s \subseteq \overline{|p|} \cup \overline{|q|}$
4. $s \subseteq \overline{|q|}$
c. John came, or Mary and John. $(p \vee(p \wedge q))$
5. $s \subseteq|p \vee(p \wedge q)|=|p|$
6. $s \neq|q|$
7. -

$$
p \vee(p \wedge q] \vDash p \vee q \vee(p \wedge q)
$$

(Quality)
(Quantity)
(Relation)

3.1. Examples

(3) a. John came, Mary came, or both came $(p \vee q \vee(p \wedge q))$
b. John came. (p)

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
3. $s \subseteq|p| \cup|q|$ or $s \subseteq \overline{|p|} \cup \overline{|q|} p \vee q \vee(p \wedge q)$
4. $s \subseteq|q|$ exhaustivity!
c. John came, or Mary and John. $(p \vee(p \wedge q))$

$$
\begin{aligned}
& \text { 1. } s \subseteq|p \vee(p \wedge q)|=|p| \\
& \text { 2. } s \nsubseteq|q| \\
& \text { 3. - } p \vee(p \wedge q) \vDash p \vee q \vee(p \wedge q)
\end{aligned}
$$

(Quantity)
(Relation)

3.2. Formal results

Recall: A entails $Q, A \vDash Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q, q \cap \cup A=\varnothing$ or $q \cap \cup A \in A$

3.2. Formal results

Recall: A entails $Q, A \vDash Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q, q \cap \cup A=\varnothing$ or $q \cap \cup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q :

3.2. Formal results

Recall: A entails $Q, A \vDash Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q, q \cap \cup A=\varnothing$ or $q \cap \cup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q :
(i) $\cup A \cap s \subseteq \cup Q$
(ii) \ldots

3.2. Formal results

Recall: A entails $Q, A \vDash Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q, q \cap \cup A=\varnothing$ or $q \cap \cup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q :
(i) $s \subseteq \overline{\bigcup A} \cup \cup Q$
(ii) ...

3.2. Formal results

Recall: A entails $Q, A \vDash Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q, q \cap \cup A=\varnothing$ or $q \cap \cup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q :
(i) $s \subseteq \overline{\bigcup A} \cup \bigcup Q$
(ii) for all $q \in Q$,

3.2. Formal results

Recall: A entails $Q, A \vDash Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q, q \cap \cup A=\varnothing$ or $q \cap \cup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q :
(i) $s \subseteq \overline{\bigcup A} \cup \bigcup Q$
(ii) for all $q \in Q, q \cap \cup A \cap s=\varnothing$ or \ldots

3.2. Formal results

Recall: A entails $Q, A \vDash Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q, q \cap \cup A=\varnothing$ or $q \cap \cup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q :
(i) $s \subseteq \overline{\bigcup A} \cup \bigcup Q$
(ii) for all $q \in Q, s \subseteq \overline{\cup A} \cup \bar{q}$ or \ldots

3.2. Formal results

Recall: A entails $Q, A \vDash Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q, q \cap \cup A=\varnothing$ or $q \cap \cup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q :
(i) $s \subseteq \overline{\bigcup A} \cup \bigcup Q$
(ii) for all $q \in Q, s \subseteq \overline{\bigcup A} \cup \bar{q}$ or there is an $a \in A$ s.t.
given $s, q \cap \cup A$ and a coincide.

3.2. Formal results

Recall: A entails $Q, A \vDash Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q, q \cap \cup A=\varnothing$ or $q \cap \cup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q :
(i) $s \subseteq \overline{\bigcup A} \cup \cup Q$
(ii) for all $q \in Q, s \subseteq \overline{\cup A} \cup \bar{q}$ or there is an $a \in A$ s.t.
$s \subseteq(\overline{q \cap \cup A} \cap \bar{a}) \cup(q \cap \cup A \cap a)$

3.2. Formal results

Recall: A entails $Q, A \vDash Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q, q \cap \cup A=\varnothing$ or $q \cap \cup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q :
(i) $s \subseteq \overline{\bigcup A} \cup \bigcup Q$
(ii) for all $q \in Q, s \subseteq \overline{\cup A} \cup \bar{q}$ or there is an $a \in A$ s.t.
$s \subseteq(\overline{q \cap \cup A} \cap \bar{a}) \cup(q \cap \cup A \cap a)$

3.2. Formal results

Recall: A entails $Q, A \vDash Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q, q \cap \cup A=\varnothing$ or $q \cap \cup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q :
(i) $s \subseteq \overline{\bigcup A} \cup \bigcup Q$
(ii) for all $q \in Q, s \subseteq \overline{\cup A} \cup \bar{q}$ or there is an $a \in A$ s.t.
$s \subseteq(\overline{q \cap \cup A} \cap \bar{a}) \cup(q \cap \cup A \cap a)$

Relation implicature for singleton answer
And if responding $\{a\}$ to Q for some $a \in Q$:

3.2. Formal results

Recall: A entails $Q, A \vDash Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q, q \cap \cup A=\varnothing$ or $q \cap \cup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q :
(i) $s \subseteq \overline{\bigcup A} \cup \cup Q$
(ii) for all $q \in Q, s \subseteq \overline{\cup A} \cup \bar{q}$ or there is an $a \in A$ s.t.
$s \subseteq(\overline{q \cap \cup A} \cap \bar{a}) \cup(q \cap \cup A \cap a)$

Relation implicature for singleton answer
And if responding $\{a\}$ to Q for some $a \in Q$:

3.2. Formal results

Recall: A entails $Q, A \vDash Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q, q \cap \cup A=\varnothing$ or $q \cap \cup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q :
(i) $s \subseteq \overline{\bigcup A} \cup \bigcup Q$
(ii) for all $q \in Q, s \subseteq \overline{\cup A} \cup \bar{q}$ or there is an $a \in A$ s.t.
$s \subseteq(\overline{q \cap \cup A} \cap \bar{a}) \cup(q \cap \cup A \cap a)$

Relation implicature for singleton answer
And if responding $\{a\}$ to Q for some $a \in Q$: for all $q \in Q$,

3.2. Formal results

Recall: A entails $Q, A \vDash Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q, q \cap \cup A=\varnothing$ or $q \cap \cup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q :
(i) $s \subseteq \overline{\bigcup A} \cup \bigcup Q$
(ii) for all $q \in Q, s \subseteq \overline{\cup A} \cup \bar{q}$ or there is an $a \in A$ s.t.
$s \subseteq(\overline{q \cap \cup A} \cap \bar{a}) \cup(q \cap \cup A \cap a)$

Relation implicature for singleton answer
And if responding $\{a\}$ to Q for some $a \in Q$: for all $q \in Q, s \subseteq \bar{a} \cup \bar{q}$ or \ldots

3.2. Formal results

Recall: A entails $Q, A \vDash Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q, q \cap \cup A=\varnothing$ or $q \cap \cup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q :
(i) $s \subseteq \overline{\bigcup A} \cup \cup Q$
(ii) for all $q \in Q, s \subseteq \overline{\bigcup A} \cup \bar{q}$ or there is an $a \in A$ s.t.
$s \subseteq(\overline{q \cap \cup A} \cap \bar{a}) \cup(q \cap \cup A \cap a)$

Relation implicature for singleton answer
And if responding $\{a\}$ to Q for some $a \in Q$: for all $q \in Q, s \subseteq \bar{a} \cup \bar{q}$ or $s \subseteq(\overline{q \cap a} \cap \bar{a}) \cup(q \cap a \cap a)$

3.2. Formal results

Recall: A entails $Q, A \vDash Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q, q \cap \cup A=\varnothing$ or $q \cap \cup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q :
(i) $s \subseteq \overline{\bigcup A} \cup \cup Q$
(ii) for all $q \in Q, s \subseteq \overline{\cup A} \cup \bar{q}$ or there is an $a \in A$ s.t.
$s \subseteq(\overline{q \cap \cup A} \cap \bar{a}) \cup(q \cap \cup A \cap a)$

Relation implicature for singleton answer
And if responding $\{a\}$ to Q for some $a \in Q$: for all $q \in Q, s \subseteq \bar{a} \cup \bar{q}$ or $s \subseteq \bar{a} \cup q$

3.2. Formal results

Recall: A entails $Q, A \vDash Q$, iff
(i) $\cup A \subseteq \cup Q$; and
(ii) for all $q \in Q, q \cap \cup A=\varnothing$ or $q \cap \cup A \in A$

Relation implicature
For a cooperative speaker with info s, responding A to Q :
(i) $s \subseteq \overline{\bigcup A} \cup \bigcup Q$
(ii) for all $q \in Q, s \subseteq \overline{\cup A} \cup \bar{q}$ or there is an $a \in A$ s.t.
$s \subseteq(\overline{q \cap \cup A} \cap \bar{a}) \cup(q \cap \cup A \cap a)$

Relation implicature for singleton answer
And if responding $\{a\}$ to Q for some $a \in Q$: for all $q \in Q, s \subseteq \bar{a} \cup \bar{q}$ or $s \subseteq \bar{a} \cup q$

3.3. And more conceptually...

- The maxim of Relation requires that: for each possibility the speaker leaves unattended, the speaker knows how it depends on the information she provided.

3.3. And more conceptually...

- The maxim of Relation requires that: for each possibility the speaker leaves unattended, the speaker knows how it depends on the information she provided.
- Together with Quality, this implies opinionatedness.

3.3. And more conceptually...

- The maxim of Relation requires that: for each possibility the speaker leaves unattended, the speaker knows how it depends on the information she provided.
- Together with Quality, this implies opinionatedness.
- Together with Quantity, this in turn yields exhaustivity.

3.3. And more conceptually...

- The maxim of Relation requires that: for each possibility the speaker leaves unattended, the speaker knows how it depends on the information she provided.
- Together with Quality, this implies opinionatedness.
- Together with Quantity, this in turn yields exhaustivity.

Main conclusion:

3.3. And more conceptually...

- The maxim of Relation requires that: for each possibility the speaker leaves unattended, the speaker knows how it depends on the information she provided.
- Together with Quality, this implies opinionatedness.
- Together with Quantity, this in turn yields exhaustivity.

Main conclusion:

- If pragmatic reasoning is sensitive to attentive content

3.3. And more conceptually...

- The maxim of Relation requires that: for each possibility the speaker leaves unattended, the speaker knows how it depends on the information she provided.
- Together with Quality, this implies opinionatedness.
- Together with Quantity, this in turn yields exhaustivity.

Main conclusion:

- If pragmatic reasoning is sensitive to attentive content (which it must be, to distinguish between (3b) and (3c));

3.3. And more conceptually...

- The maxim of Relation requires that: for each possibility the speaker leaves unattended, the speaker knows how it depends on the information she provided.
- Together with Quality, this implies opinionatedness.
- Together with Quantity, this in turn yields exhaustivity.

Main conclusion:

- If pragmatic reasoning is sensitive to attentive content (which it must be, to distinguish between (3b) and (3c));
- then exhaustivity is a conversational implicature.

4. Discussion

4.1. 'Alternatives'
4.2. Semantics
4.3. Semantic desiderata
4.4. 'Gricean'?
4.5. Grice vs. grammar
4.6. Other maxims of Relation
4.7. Relatedness and knowledge
4.8. Logical relatedness

4.1. 'Alternatives'

Existing approaches (since forever):

- 'Why did the speaker not say " $p \wedge q$ " ?'

4.1. 'Alternatives'

Existing approaches (since forever):

- 'Why did the speaker not say " $p \wedge q$ " ?'
- Mere ignorance is sufficient reason.

4.1. 'Alternatives'

Existing approaches (since forever):

- 'Why did the speaker not say " $p \wedge q$ " ?'
- Mere ignorance is sufficient reason.

My approach:

- 'Why did the speaker not say " $p \vee(p \wedge q)$ " ?'

4.1. 'Alternatives'

Existing approaches (since forever):

- 'Why did the speaker not say " $p \wedge q$ " ?'
- Mere ignorance is sufficient reason.

My approach:

- 'Why did the speaker not say " $p \vee(p \wedge q)$ " ?'
- Ignorance is no excuse.

4.1. 'Alternatives'

Existing approaches (since forever):

- 'Why did the speaker not say " $p \wedge q$ " ?'
- Mere ignorance is sufficient reason.

My approach:

- 'Why did the speaker not say " $p \vee(p \wedge q)$ " ?'
- Ignorance is no excuse.
- Hence something stronger is implied: exhaustivity.

4.1. 'Alternatives'

Existing approaches (since forever):

- 'Why did the speaker not say " $p \wedge q$ " ?'
- Mere ignorance is sufficient reason.

My approach:

- 'Why did the speaker not say " $p \vee(p \wedge q)$ " ?'
- Ignorance is no excuse.
- Hence something stronger is implied: exhaustivity.

Beware:

- These 'alternatives' are fully determined by the maxims.
- Speakers need not reason in terms of alternatives.

4.2. Semantics

Restriction
A restricted to $b, A_{b}:=\{a \cap b \mid a \in A, a \cap b \neq \varnothing\}$
Semantics (Roelofsen, 2011)

$$
\begin{aligned}
& \text { 1. }[p]=\{\{w \in \text { Worlds } \mid w(p)=\text { true }\}\} \\
& \text { 2. }[\neg \varphi]=\{\overline{\cup[\varphi]\}} \text { if } \overline{\cup[\varphi]} \text { is nonempty; } \varnothing \text { otherwise. } \\
& \text { 3. }[\varphi \vee \psi]=([\varphi] \cup[\psi])_{|\varphi| \cup|\psi|}=[\varphi] \cup[\psi] \\
& \text { 4. }[\varphi \wedge \psi]=([\varphi] \cup[\psi])_{|\varphi| \cap|\psi|}
\end{aligned}
$$

4.2. Semantics

Restriction

A restricted to $b, A_{b}:=\{a \cap b \mid a \in A, a \cap b \neq \varnothing\}$
Semantics (Roelofsen, 2011)

1. $[p]=\{\{w \in$ Worlds $\mid w(p)=$ true $\}\}$
2. $[\neg \varphi]=\{\overline{\bigcup[\varphi]}\}$ if $\overline{\bigcup[\varphi]}$ is nonempty; \varnothing otherwise.
3. $[\varphi \vee \psi]=([\varphi] \cup[\psi])_{|\varphi| \cup|\psi|}=[\varphi] \cup[\psi]$
4. $[\varphi \wedge \psi]=([\varphi] \cup[\psi])_{|\varphi| \cap|\psi|}$

Attentive semantics is not the only suitable semantics:

- Unrestricted Inquisitive Sem. (Ciardelli, 2009; Westera, 2012)

4.2. Semantics

Restriction

A restricted to $b, A_{b}:=\{a \cap b \mid a \in A, a \cap b \neq \varnothing\}$
Semantics (Roelofsen, 2011)

$$
\begin{aligned}
& \text { 1. }[p]=\{\{w \in \text { Worlds } \mid w(p)=\text { true }\}\} \\
& \text { 2. }[\neg \varphi]=\{\overline{\bigcup[\varphi]}\} \text { if } \overline{\cup[\varphi]} \text { is nonempty; } \varnothing \text { otherwise. } \\
& \text { 3. }[\varphi \vee \psi]=([\varphi] \cup[\psi])_{|\varphi| \cup|\psi|}=[\varphi] \cup[\psi] \\
& \text { 4. }[\varphi \wedge \psi]=([\varphi] \cup[\psi])_{|\varphi| \cap|\psi|}
\end{aligned}
$$

Attentive semantics is not the only suitable semantics:

- Unrestricted Inquisitive Sem. (Ciardelli, 2009; Westera, 2012)

Minimally, the semantics must lack the absorption laws:

- Absorption: $p \vee(p \wedge q) \equiv p \equiv p \wedge(p \vee q)$

4.3. Semantic desiderata

- No absorption laws.

4.3. Semantic desiderata

- No absorption laws.
- No downward closure (cf. Basic Inquisitive Semantics).

4.3. Semantic desiderata

- No absorption laws.
- No downward closure (cf. Basic Inquisitive Semantics).
- Questions, the responses to which may be exhaustified, are not partitions.
(cf. Groenendijk and Stokhof, 1984; cf. 'mention-some').

4.3. Semantic desiderata

- No absorption laws.
- No downward closure (cf. Basic Inquisitive Semantics).
- Questions, the responses to which may be exhaustified, are not partitions.
(cf. Groenendijk and Stokhof, 1984; cf. 'mention-some').
- Wh-words are existential quantifiers over sets.

4.4. 'Gricean'?

"that there [appear to be] divergences in meaning between [...] the FORMAL devices [and] their analogs or counterparts in natural language" (Grice, 1975)

4.4. 'Gricean'?

"that there [appear to be] divergences in meaning between [...] the FORMAL devices [and] their analogs or counterparts in natural language" (Grice, 1975)

- The semantics treats informative content classically.

4.4. 'Gricean'?

"that there [appear to be] divergences in meaning between [...] the FORMAL devices [and] their analogs or counterparts in natural language" (Grice, 1975)

- The semantics treats informative content classically.
- Grice wouldn't be against other dimensions of meaning.

4.4. 'Gricean'?

"that there [appear to be] divergences in meaning between [...] the FORMAL devices [and] their analogs or counterparts in natural language" (Grice, 1975)

- The semantics treats informative content classically.
- Grice wouldn't be against other dimensions of meaning.
- The connectives are still algebraically 'basic'.

4.4. 'Gricean'?

"that there [appear to be] divergences in meaning between [...] the FORMAL devices [and] their analogs or counterparts in natural language" (Grice, 1975)

- The semantics treats informative content classically.
- Grice wouldn't be against other dimensions of meaning.
- The connectives are still algebraically 'basic'.

Besides: this is the only way.

4.5. Grice vs. grammar

Perhaps the dominant approach to exhaustivity today:

4.5. Grice vs. grammar

Perhaps the dominant approach to exhaustivity today:

- There are invisible exhaustivity operators in our grammar.

4.5. Grice vs. grammar

Perhaps the dominant approach to exhaustivity today:

- There are invisible exhaustivity operators in our grammar.
- They come in at night, unseen, unheard - no one understands their motives.

4.5. Grice vs. grammar

Perhaps the dominant approach to exhaustivity today:

- There are invisible exhaustivity operators in our grammar.
- They come in at night, unseen, unheard - no one understands their motives.
- They are inserted 'by default', unless canceled (and variations on this theme).

4.5. Grice vs. grammar

Perhaps the dominant approach to exhaustivity today:

- There are invisible exhaustivity operators in our grammar.
- They come in at night, unseen, unheard - no one understands their motives.
- They are inserted 'by default', unless canceled (and variations on this theme).

Main arguments (Chierchia, et al., 2008):

- 'Grice cannot deal with the epistemic step, grammar can.'

4.5. Grice vs. grammar

Perhaps the dominant approach to exhaustivity today:

- There are invisible exhaustivity operators in our grammar.
- They come in at night, unseen, unheard - no one understands their motives.
- They are inserted 'by default', unless canceled (and variations on this theme).

Main arguments (Chierchia, et al., 2008):

- 'Grice cannot deal with the epistemic step, grammar can.'
- 'Grice cannot handle 'embedded implicatures', grammar can.'

4.5. Grice vs. grammar

Perhaps the dominant approach to exhaustivity today:

- There are invisible exhaustivity operators in our grammar.
- They come in at night, unseen, unheard - no one understands their motives.
- They are inserted 'by default', unless canceled (and variations on this theme).

Main arguments (Chierchia, et al., 2008):

- 'Grice cannot deal with the epistemic step, grammar can.'
- 'Grice cannot handle 'embedded implicatures', grammar can.'

Response:

- Grice can do it; and the grammatical approach needs him.

4.6. Other maxims of Relation

i. $R_{s} \vDash Q$
(mine)

4.6. Other maxims of Relation

$$
\begin{aligned}
& \text { i. } R_{s} \vDash Q \\
& \text { ii. } R_{C G} \vDash Q
\end{aligned}
$$

(mine)
(Roberts's (1996) contextual entailment)

4.6. Other maxims of Relation

$$
\begin{aligned}
& \text { i. } R_{s} \vDash Q \\
& \text { ii. } R_{C G} \vDash Q \\
& \text { iii. } R_{h} \vDash Q
\end{aligned}
$$

(mine)
(Roberts's (1996) contextual entailment)
(\approx GS's (1984) pragmatic answer)

4.6. Other maxims of Relation

$$
\begin{aligned}
& \text { i. } R_{s} \vDash Q \\
& \text { ii. } R_{C G} \vDash Q \\
& \text { iii. } R_{h} \vDash Q
\end{aligned}
$$

(Roberts's (1996) contextual entailment)

(\approx GS's (1984) pragmatic answer)
ii. and iii. are too strong:

4.6. Other maxims of Relation

$$
\begin{aligned}
& \text { i. } R_{s} \vDash Q \\
& \text { ii. } R_{C G} \vDash Q \\
& \text { iii. } R_{h} \vDash Q
\end{aligned}
$$

(Roberts's (1996) contextual entailment)
(\approx GS's (1984) pragmatic answer)
ii. and iii. are too strong:

- The participants need not already know how R is relevant.

4.6. Other maxims of Relation

$$
\begin{aligned}
& \text { i. } R_{s} \vDash Q \\
& \text { ii. } R_{C G} \vDash Q \\
& \text { iii. } R_{h} \vDash Q
\end{aligned}
$$

(Roberts's (1996) contextual entailment)
(\approx GS's (1984) pragmatic answer)
ii. and iii. are too strong:

- The participants need not already know how R is relevant.
- They need only be able to figure it out.

4.6. Other maxims of Relation

> i. $R_{s} \vDash Q$
> ii. $R_{C G} \vDash Q$
> iii. $R_{h} \vDash Q$
(Roberts's (1996) contextual entailment)
(\approx GS's (1984) pragmatic answer)
ii. and iii. are too strong:

- The participants need not already know how R is relevant.
- They need only be able to figure it out. (left implicit here)

4.6. Other maxims of Relation

> i. $R_{s} \vDash Q$
> ii. $R_{C G} \vDash Q$
> iii. $R_{h} \vDash Q$
(Roberts's (1996) contextual entailment)
(\approx GS's (1984) pragmatic answer)
ii. and iii. are too strong:

- The participants need not already know how R is relevant.
- They need only be able to figure it out. (left implicit here)
(4) Did John go to the party? It was raining. \leadsto If it rained, John $\{$ went / didn't go $\}$.

4.7. Relatedness and knowledge

$$
R_{s} \vDash Q \quad \text { 'the speaker knows how } R \text { is related to } Q '
$$

4.7. Relatedness and knowledge

$R_{s} \vDash Q \quad$ 'the speaker knows how R is related to $Q '$
Relatedness
A is related to Q in world w iff for some fact $f, w \in f, A_{f} \vDash Q$.

4.7. Relatedness and knowledge

$R_{s} \vDash Q \quad$ 'the speaker knows how R is related to Q '

Relatedness
A is related to Q in world w iff for some fact $f, w \in f, A_{f} \vDash Q$.

- The speaker knows that A is related to Q iff in all $w \in s, A$ is rel. to Q.

4.7. Relatedness and knowledge

$R_{s} \vDash Q \quad$ 'the speaker knows how R is related to Q '

Relatedness
A is related to Q in world w iff for some fact $f, w \in f, A_{f} \vDash Q$.

- The speaker knows that A is related to Q iff in all $w \in s, A$ is rel. to Q.
- The speaker knows how A is related to Q iff in all $w \in s, A$ is related to Q by the same f.

4.7. Relatedness and knowledge

$R_{s} \vDash Q \quad$ 'the speaker knows how R is related to Q '

Relatedness
A is related to Q in world w iff for some fact $f, w \in f, A_{f} \vDash Q$.

- The speaker knows that A is related to Q iff in all $w \in s, A$ is rel. to Q.
- The speaker knows how A is related to Q iff in all $w \in s, A$ is related to Q by the same f.

Now:

- For all A, Q true in w : there is a fact $f, w \in f$, s.t. $A_{f} \vDash Q$.

4.7. Relatedness and knowledge

$R_{s} \vDash Q \quad$ 'the speaker knows how R is related to Q '

Relatedness
A is related to Q in world w iff for some fact $f, w \in f, A_{f} \vDash Q$.

- The speaker knows that A is related to Q iff in all $w \in s, A$ is rel. to Q.
- The speaker knows how A is related to Q iff in all $w \in s, A$ is related to Q by the same f.

Now:

- For all A, Q true in w :
there is a fact $f, w \in f$, s.t. $A_{f} \vDash Q$.
(e.g., let f be $\{w\}$)

4.7. Relatedness and knowledge

$R_{s} \vDash Q \quad$ 'the speaker knows how R is related to Q '

Relatedness
A is related to Q in world w iff for some fact $f, w \in f, A_{f} \vDash Q$.

- The speaker knows that A is related to Q iff in all $w \in s, A$ is rel. to Q.
- The speaker knows how A is related to Q iff in all $w \in s, A$ is related to Q by the same f.

Now:

- For all A, Q true in w :
there is a fact $f, w \in f$, s.t. $A_{f} \vDash Q$.
(e.g., let f be $\{w\}$)

Within a world, everything is related.

4.8. Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.
(Groenendijk and Roelofsen, 2009)

4.8. Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.
(Groenendijk and Roelofsen, 2009)
(6) Dogs and cats are mammals.
(Logical cons.)
Dogs are mammals.

4.8. Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.
(Groenendijk and Roelofsen, 2009)
(6) Dogs and cats are mammals.
(Logical cons.)
Dogs are mammals.
(7) Dogs are mammals.
(Non-logical cons.)
Dogs are animals.

4.8. Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.
(Groenendijk and Roelofsen, 2009)
(6) Dogs and cats are mammals.
(Logical cons.)
Dogs are mammals.
(7) Dogs are mammals.+ world knowledge (Non-logical cons.) Dogs are animals.

4.8. Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.
(Groenendijk and Roelofsen, 2009)
(6) Dogs and cats are mammals.+ logic
(Logical cons.) Dogs are mammals.
(7) Dogs are mammals. + world knowledge (Non-logical cons.) Dogs are animals.

4.8. Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.
(Groenendijk and Roelofsen, 2009)
(6) Dogs and cats are mammals.+ logic
(Logical cons.) Dogs are mammals.
(7) Dogs are mammals. + world knowledge (Non-logical cons.) Dogs are animals.

Relatedness
A is related to Q in world w iff for some fact $f, w \in f, A_{f} \vDash Q$.

4.8. Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.
(Groenendijk and Roelofsen, 2009)
(6) Dogs and cats are mammals.+ logic
(Logical cons.) Dogs are mammals.
(7) Dogs are mammals. + world knowledge (Non-logical cons.) Dogs are animals.

Relatedness
A is related to Q in world w iff for some fact $f, w \in f, A_{f} \vDash Q$.

- Logical iff f captures all and only the laws of logic.

4.8. Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.
(Groenendijk and Roelofsen, 2009)
(6) Dogs and cats are mammals.+ logic
(Logical cons.) Dogs are mammals.
(7) Dogs are mammals. + world knowledge (Non-logical cons.) Dogs are animals.

Relatedness
A is related to Q in world w iff for some fact $f, w \in f, A_{f} \vDash Q$.

- Logical iff f captures all and only the laws of logic.
- Non-logical iff f is a contingency.

4.8. Logical relatedness

Just as [logical consequence] rules the validity of argumentation, [logical relatedness] rules the coherence of information exchange.
(Groenendijk and Roelofsen, 2009)
(6) Dogs and cats are mammals.+ logic
(Logical cons.) Dogs are mammals.
(7) Dogs are mammals. + world knowledge (Non-logical cons.) Dogs are animals.

Relatedness

A is related to Q in world w iff for some fact $f, w \in f, A_{f} \vDash Q$.

- Logical iff f captures all and only the laws of logic.
- Non-logical iff f is a contingency.

Logical consequence is logical relatedness.

End of Part I

Two puzzles

(1) Of John, Bill and Mary, who came to the party?
a. John came \downarrow. \sim Mary and Bill didn't.
b. John came \nearrow.
\leadsto...wait, there's more.
$\leadsto \ldots$ perhaps that implies sth. about M\&B?
\leadsto...but I'm not sure.
\leadsto...did I make myself clear?

Part II

5. Analysis
6. Results
7. Discussion
8. Analysis

5. Analysis

(1) Of John, Bill and Mary, who came to the party?
b. John came \nearrow.
\leadsto...wait, there's more.
$\leadsto \ldots$ perhaps that implies sth. about M\&B?
\leadsto...but I'm not sure.
\leadsto...did I make myself clear?

5. Analysis

(1) Of John, Bill and Mary, who came to the party?
b. John came λ^{L}.
\leadsto...wait, there's more.
\leadsto...perhaps that implies sth. about M\&B?
c. John came $\boldsymbol{\lambda}^{H}$.
\leadsto...but I'm not sure.
\leadsto...did I make myself clear?

5. Analysis

(1) Of John, Bill and Mary, who came to the party?
b. John came λ^{L}.
\leadsto...wait, there's more.
$\leadsto \ldots$ perhaps that implies sth. about M\&B?
c. John came \boldsymbol{r}^{H}.
\leadsto...but I'm not sure.
\leadsto...did I make myself clear?

5. Analysis

(1) Of John, Bill and Mary, who came to the party?
b. John came λ^{L}.
\leadsto...wait, there's more.
\leadsto...perhaps that implies sth. about M\&B?
c. John came $\boldsymbol{\lambda}^{H}$.
\leadsto...but I'm not sure.
\leadsto...did I make myself clear?

5. Analysis

(1) Of John, Bill and Mary, who came to the party?
b. John came λ^{L}.
\leadsto...wait, there's more.
\leadsto...perhaps that implies sth. about M\&B?
c. John came $\boldsymbol{\lambda}^{H}$.
\leadsto...but I'm not sure.
\leadsto...did I make myself clear?

Proposal

1. The final rise marks the violation of a maxim.

5. Analysis

(1) Of John, Bill and Mary, who came to the party?
b. John came λ^{L}.
\leadsto...wait, there's more.
\leadsto...perhaps that implies sth. about M\&B?
c. John came $\boldsymbol{\lambda}^{H}$.
\leadsto...but I'm not sure.
(Quality)
\leadsto...did I make myself clear?

Proposal

1. The final rise marks the violation of a maxim.

5. Analysis

(1) Of John, Bill and Mary, who came to the party?
b. John came λ^{L}.
\leadsto...wait, there's more.
\leadsto...perhaps that implies sth. about M\&B?
c. John came $\boldsymbol{\lambda}^{H}$.
\leadsto...but I'm not sure.
\leadsto...did I make myself clear?

Proposal

1. The final rise marks the violation of a maxim.

5. Analysis

(1) Of John, Bill and Mary, who came to the party?
b. John came ${ }^{L}$.
\leadsto...wait, there's more.
(Quantity)
\leadsto...perhaps that implies sth. about M\&B?
c. John came $\boldsymbol{\lambda}^{H}$.
\leadsto...but I'm not sure.
\leadsto...did I make myself clear?

Proposal

1. The final rise marks the violation of a maxim.
2. Its pitch conveys the severity of the violation:
${ }_{\lambda}{ }^{H}$: Quality/Manner;
\nRightarrow L: Quantity/Relation.
(cf. Ward \& Hirschberg, 1992;
Banziger \& Scherer, 2005)

5. Analysis

(1) Of John, Bill and Mary, who came to the party?
b. John came ${ }^{L}$.
\leadsto...wait, there's more.
(Quantity)
\leadsto...perhaps that implies sth. about M\&B?
c. John came \boldsymbol{r}^{H}.
\leadsto...but I'm not sure.
\leadsto...did I make myself clear?

Proposal

1. The final rise marks the violation of a maxim.
2. Its pitch conveys the severity of the violation:
${ }_{\lambda}{ }^{H}$: Quality/Manner;
\nRightarrow L: Quantity/Relation.
(cf. Ward \& Hirschberg, 1992;
Banziger \& Scherer, 2005)

This proposal is new in its generality, not in spirit.

6. Results

6.1. Example
6.2. Formal results
6.3. General results

6.1. Example

(8) Of J and M , who came to the party?

6.1. Example

(8) Of J and M , who came to the party?

Readings
...wait, there's more.
...perhaps that implies sth. about Mary?
(Quantity)
(Relation)
...but I'm not sure.
...did I make myself clear?

6.1. Example

(8) Of J and M , who came to the party?
$(p \vee q \vee(p \wedge q))$
(p)

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
(Quality)
(Quantity)
(Relation)

Readings
...wait, there's more.
...perhaps that implies sth. about Mary?
...but I'm not sure.
...did I make myself clear?
(Quantity)
(Relation)
(Quality)
(Manner)

6.1. Example

(8) Of J and M , who came to the party?
$(p \vee q \vee(p \wedge q))$
(p)

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
3. $s \subseteq \overline{|p|} \cup|q|$ or $s \subseteq \overline{|p|} \cup \overline{|q|}$
4. The speaker thinks she is clear, concise, etc.
(Quality)
(Quantity)
(Relation)
(Manner)

Readings
...wait, there's more.
...perhaps that implies sth. about Mary?
...but I'm not sure.
...did I make myself clear?
(Quantity)
(Relation)
(Quality)
(Manner)

6.1. Example

(8) Of J and M , who came to the party?
$(p \vee q \vee(p \wedge q))$
(Quantity)
(Relation)
(Manner)

Readings
...wait, there's more.
...perhaps that implies sth. about Mary?
...but I'm not sure.
...did I make myself clear?
(Quantity)
(Relation)
(Quality)
(Manner)

6.1. Example

(8) Of J and M, who came to the party?
$(p \vee q \vee(p \wedge q))$
(Quantity)
(Relation)
(Manner)

Readings
...wait, there's more.
...perhaps that implies sth. about Mary?
.but I'm not sure.
...did I make myself clear?
(Quantity)
(Relation)
(Quality)
(Manner)

6.1. Example

(8) Of J and M , who came to the party?
$(p \vee q \vee(p \wedge q))$
(p)

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
3. $s \subseteq \overline{|p|} \cup|q|$ or $s \subseteq \overline{|p|} \cup \overline{|q|}$
4. The speaker thinks she is clear, concise, etc.
(Quality)
(Quantity)
(Relation)
(Manner)

Readings
...wait, there's more.
...perhaps that implies sth. about Mary?
...but I'm not sure.
...did I make myself clear?
(Quantity)
(Relation)
(Quality)
(Manner)

6.1. Example

(8) Of J and M , who came to the party?
$(p \vee q \vee(p \wedge q))$
(p)

1. $s \subseteq|p|$
2. $s \subseteq|q|$
3. $s \subseteq \overline{|p|} \cup|q|$ or $s \subseteq \overline{|p|} \cup \overline{|q|}$
4. The speaker thinks she is clear, concise, etc.
(Quality)
(\quad)
(Relation)
(Manner)

Readings
...wait, there's more.
...perhaps that implies sth. about Mary?
...but I'm not sure.
...did I make myself clear?
(Quantity)
(Relation)
(Quality)
(Manner)

6.1. Example

(8) Of J and M , who came to the party?
$(p \vee q \vee(p \wedge q))$
(p)

1. $s \subseteq|p|$
2. $s \subseteq|q|$
3. $s \subseteq \overline{|p|} \cup|q|$ or $s \subseteq \overline{|p|} \cup \overline{|q|}$
4. The speaker thinks she is clear, concise, etc.
(Quality)
(\quad)
(Relation)
(Manner)

Readings

\checkmark...wait, there's more.
...perhaps that implies sth. about Mary?
...but I'm not sure.
...did I make myself clear?

6.1. Example

(8) Of J and M , who came to the party?
$(p \vee q \vee(p \wedge q))$
(p)

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
3. $s \subseteq \overline{|p|} \cup|q|$ or $s \subseteq \overline{|p|} \cup \overline{|q|}$
4. The speaker thinks she is clear, concise, etc.
(Quality)
(Quantity)
(Relation)
(Manner)

Readings

\checkmark...wait, there's more.
...perhaps that implies sth. about Mary?
...but I'm not sure.
...did I make myself clear?
(Quantity)
(Relation)
(Quality)
(Manner)

6.1. Example

(8) Of J and M , who came to the party?
$(p \vee q \vee(p \wedge q))$
(p)
(Quality)
(Quantity)
(Manner)

Readings

\checkmark...wait, there's more.
...perhaps that implies sth. about Mary?
...but I'm not sure.
...did I make myself clear?
(Quantity)
(Relation)
(Quality)
(Manner)

6.1. Example

(8) Of J and M , who came to the party?
$(p \vee q \vee(p \wedge q))$
(p)
(Quality)
(Quantity)
(Manner)

Readings
\checkmark...wait, there's more.
...perhaps that implies sth. about Mary?
...but I'm not sure.
...did I make myself clear?
(Quantity)
(Relation)
(Quality)
(Manner)

6.1. Example

(8) Of J and M , who came to the party?
$(p \vee q \vee(p \wedge q))$
(p)

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
3. $s \subseteq \overline{|p|} \cup|q|$ or $s \subseteq \overline{|p|} \cup \overline{|q|}$
4. The speaker thinks she is clear, concise, etc.
(Quality)
(Quantity)
(Relation)
(Manner)

Readings

\checkmark...wait, there's more.
\checkmark...perhaps that implies sth. about Mary?
...but I'm not sure.
...did I make myself clear?
(Quantity)
(Relation)
(Quality)
(Manner)

6.1. Example

(8) Of J and M , who came to the party? John came \nearrow.

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
3. $s \subseteq \overline{|p|} \cup|q|$ or $s \subseteq \overline{|p|} \cup \overline{|q|}$
(Quality)
(Quantity)
4. The speaker doesn't think she's clear, concise, etc.

Readings

\checkmark...wait, there's more.
\checkmark...perhaps that implies sth. about Mary?
...but I'm not sure.
...did I make myself clear?
(Quantity)
(Relation)
(Quality)
(Manner)

6.1. Example

(8) Of J and M , who came to the party? John came \nearrow.

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
3. $s \subseteq \overline{|p|} \cup|q|$ or $s \subseteq \overline{|p|} \cup \overline{|q|}$
(Quality)
(Quantity)
4. The speaker doesn't think she's clear, concise, etc.

Readings

\checkmark...wait, there's more.
\checkmark...perhaps that implies sth. about Mary?
..but I'm not sure.
(Quantity)
(Relation)
(Quality)
(Manner)

6.1. Example

(8) Of J and M , who came to the party?

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
3. $s \subseteq \overline{|p|} \cup|q|$ or $s \subseteq \overline{|p|} \cup \overline{|q|}$
4. The speaker doesn't think she's clear, concise, etc.

Readings

\checkmark...wait, there's more.
\checkmark...perhaps that implies sth. about Mary?
\checkmark...but I'm not sure.
\checkmark...did I make myself clear?
(Quantity)
(Relation)
(Quality)
(Manner)

6.1. Example

(8) Of J and M , who came to the party? John came \nearrow.

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
3. $s \subseteq \overline{|p|} \cup|q|$ or $s \subseteq \overline{|p|} \cup \overline{|q|}$
4. The speaker doesn't think she's clear, concise, etc.

Readings

\checkmark...wait, there's more.
\checkmark...perhaps that implies sth. about Mary?
\checkmark...but I'm not sure.
\checkmark...did I make myself clear?
(Quantity)
(Relation)
(Quality)
(Manner)

Furthermore:

- Exhaustivity disappears in all readings except Manner.

6.1. Example

(8) Of J and M , who came to the party? John came \nearrow.

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
3. $s \subseteq \overline{|p|} \cup|q|$ or $s \subseteq \overline{|p|} \cup \overline{|q|}$
4. The speaker doesn't think she's clear, concise, etc.

Readings

\checkmark...wait, there's more.
\checkmark...perhaps that implies sth. about Mary?
\checkmark...but I'm not sure.
\checkmark...did I make myself clear?
(Quantity)
(Relation)
(Quality)
(Manner)

Furthermore:

- Exhaustivity disappears in all readings except Manner.
- Complete answers lack Relation/Quantity reading.

6.1. Example

(8) Of J and M , who came to the party? John came \nearrow.

1. $s \subseteq|p|$
2. $s \nsubseteq|q|$
3. $s \subseteq \overline{|p|} \cup|q|$ or $s \subseteq \overline{|p|} \cup \overline{|q|}$
4. The speaker doesn't think she's clear, concise, etc.

Readings

\checkmark...wait, there's more.
\checkmark...perhaps that implies sth. about Mary?
\checkmark...but I'm not sure.
\checkmark...did I make myself clear?
(Quantity)
(Relation)
(Quality)
(Manner)

Furthermore:

- Exhaustivity disappears in all readings except Manner.
- Complete answers lack Relation/Quantity reading.
(Except in sarcastic pretense)

6.2. Formal results

Relation violation
For sp. with info s, responding A to Q, violating Relation:

6.2. Formal results

Relation violation

For sp. with info s, responding A to Q, violating Relation:
(i) $s \subseteq \overline{\bigcup A} \cup \cup Q$; and
(ii) for all $q \in Q, s \subseteq \overline{\bigcup A} \cup \bar{q}$ and for some $a \in A$,
$s \subseteq(\overline{q \cap \cup A} \cap \bar{a}) \cup(q \cap \cup A \cap a)$

6.2. Formal results

Relation violation

For sp. with info s, responding A to Q, violating Relation:
(i) $s \nsubseteq \overline{\bigcup A} \cup \cup Q$; or
(ii) for some $q \in Q, s \nsubseteq \overline{\bigcup A} \cup \bar{q}$ and for all $a \in A$, $s \notin(\overline{q \cap \cup A} \cap \bar{a}) \cup(q \cap \cup A \cap a)$

6.2. Formal results

Relation violation

For sp. with info s, responding A to Q, violating Relation:
(i) $s \nsubseteq \overline{\bigcup A} \cup \cup Q$; or
(ii) for some $q \in Q, s \nsubseteq \overline{\bigcup A} \cup \bar{q}$ and for all $a \in A$, $s \notin(\overline{q \cap \cup A} \cap \bar{a}) \cup(q \cap \cup A \cap a)$

Relation violation on singleton answer And if responding $\{a\}$ to Q for some $a \in Q$: for some $q \in Q, s \nsubseteq \bar{a} \cup \bar{q}$ and $s \nsubseteq \bar{a} \cup q$

6.2. Formal results

Relation violation

For sp. with info s, responding A to Q, violating Relation:
(i) $s \nsubseteq \overline{\bigcup A} \cup \cup Q$; or
(ii) for some $q \in Q, s \nsubseteq \overline{\bigcup A} \cup \bar{q}$ and for all $a \in A$,
$s \notin(\overline{q \cap \cup A} \cap \bar{a}) \cup(q \cap \cup A \cap a)$

Relation violation on singleton answer
And if responding $\{a\}$ to Q for some $a \in Q$: for some $q \in Q, s \nsubseteq \bar{a} \cup \bar{q}$ and $s \nsubseteq \bar{a} \cup q$

Quantity violation
For some $Q^{\prime} \subseteq Q, s \subseteq \cup Q^{\prime}$ and $\cup R \nsubseteq \cup Q^{\prime}$.

6.3. General results

My approach unifies existing approaches:

6.3. General results

My approach unifies existing approaches:

- Quality: 'lack of belief in proposition expressed'
(Truckenbrodt, 2006)

6.3. General results

My approach unifies existing approaches:

- Quality: 'lack of belief in proposition expressed'
(Truckenbrodt, 2006)
- Relation: 'uncertain relevance'/'scalar uncertainty'
(Ward \& Hirschberg, 1985)

6.3. General results

My approach unifies existing approaches:

- Quality: 'lack of belief in proposition expressed'
(Truckenbrodt, 2006)
- Relation: 'uncertain relevance'/‘scalar uncertainty’ (Ward \& Hirschberg, 1985)
- Relation: 'rise-fall-rise quantifies over focus alternatives'
(Constant, 2012)

6.3. General results

My approach unifies existing approaches:

- Quality: 'lack of belief in proposition expressed'
(Truckenbrodt, 2006)
- Relation: 'uncertain relevance'/'scalar uncertainty’
(Ward \& Hirschberg, 1985)
- Relation: 'rise-fall-rise quantifies over focus alternatives'
(Constant, 2012)
- Quantity: 'unfinishedness'
(Bartels, 1999)

6.3. General results

My approach unifies existing approaches:

- Quality: 'lack of belief in proposition expressed'
(Truckenbrodt, 2006)
- Relation: 'uncertain relevance'/'scalar uncertainty'
(Ward \& Hirschberg, 1985)
- Relation: 'rise-fall-rise quantifies over focus alternatives'
(Constant, 2012)
- Quantity: 'unfinishedness'
(Bartels, 1999)
- Manner reading: Usually treated as a side-effect.

6.3. General results

My approach unifies existing approaches:

- Quality: 'lack of belief in proposition expressed'
(Truckenbrodt, 2006)
- Relation: 'uncertain relevance'/'scalar uncertainty'
(Ward \& Hirschberg, 1985)
- Relation: 'rise-fall-rise quantifies over focus alternatives'
(Constant, 2012)
- Quantity: 'unfinishedness'
(Bartels, 1999)
- Manner reading: Usually treated as a side-effect.

The enabling innovation is the 'attentive' maxim of Relation.

7. Discussion

7.1. Evoked questions
7.2. Other uses of the rise
7.3. Objective/subjective cooperativity

7.1. Evoked questions

- Conveying uncertainty regarding ϕ typically evokes the question of whether ϕ.

7.1. Evoked questions

- Conveying uncertainty regarding ϕ typically evokes the question of whether ϕ.
- Hence, the Quality, Relation and Manner readings evoke questions!

7.1. Evoked questions

- Conveying uncertainty regarding ϕ typically evokes the question of whether ϕ.
- Hence, the Quality, Relation and Manner readings evoke questions!
(4) Did John go to the party?

It was raining \downarrow. $\quad \leadsto H e$ \{likes / dislikes $\}$ rainy parties

7.1. Evoked questions

- Conveying uncertainty regarding ϕ typically evokes the question of whether ϕ.
- Hence, the Quality, Relation and Manner readings evoke questions!
(4) Did John go to the party?

It was raining \downarrow. $\quad \rightarrow H e$ \{likes / dislikes\} rainy parties It was raining λ.
\leadsto Does he like rainy parties?

7.1. Evoked questions

- Conveying uncertainty regarding ϕ typically evokes the question of whether ϕ.
- Hence, the Quality, Relation and Manner readings evoke questions!
(4) Did John go to the party?

It was raining \downarrow. $\quad \rightarrow H e$ \{likes / dislikes\} rainy parties It was raining $\not \subset$. $\quad \leadsto$ Does he like rainy parties?
He only likes rainy parties πL ? $\quad \sim$ Was it raining?

7.1. Evoked questions

- Conveying uncertainty regarding ϕ typically evokes the question of whether ϕ.
- Hence, the Quality, Relation and Manner readings evoke questions!
(4) Did John go to the party?

It was raining \downarrow. $\quad \rightarrow H e$ \{likes / dislikes\} rainy parties It was raining $\not \subset$. $\quad \leadsto$ Does he like rainy parties?
He only likes rainy parties πL ? $\quad \sim$ Was it raining?

Connecting this to the literature is a work in progress.
7.2. Other uses of the rise

7.2. Other uses of the rise

Contrastive topic (Büring, 2003):
(9) $[J o h n]_{C T}$ had the $[\text { beans }]_{F}$.

7.2. Other uses of the rise

Contrastive topic (Büring, 2003):
(9) $[J o h n]_{F}$ had the $[\text { beans }]_{F \searrow}$.

7.2. Other uses of the rise

Contrastive topic (Büring, 2003):
(9) $[J o h n]_{F,}$ had the $[\text { beans }]_{\digamma \searrow}$.

Interrogatives:
(10) a. Was John there \nearrow ?
b. Was John there \downarrow ?

7.2. Other uses of the rise

Contrastive topic (Büring, 2003):
(9) $[J o h n]_{F,}$ had the $[\text { beans }]_{\digamma \searrow}$.

Interrogatives:
(10) a. Was John there \nearrow ?
b. Was John there \downarrow ?

Future work!

7.3. Objective/subjective cooperativity

The maxims can be (and have been) defined in two ways:

7.3. Objective/subjective cooperativity

The maxims can be (and have been) defined in two ways:

- Objective: Say only what is true, relevant, etc.

7.3. Objective/subjective cooperativity

The maxims can be (and have been) defined in two ways:

- Objective: Say only what is true, relevant, etc.
- Subjective: Say only what you think is true, relevant, etc.

7.3. Objective/subjective cooperativity

The maxims can be (and have been) defined in two ways:

- Objective: Say only what is true, relevant, etc.
- Subjective: Say only what you think is true, relevant, etc.

My account of the final rise relies on subjective maxims:

7.3. Objective/subjective cooperativity

The maxims can be (and have been) defined in two ways:

- Objective: Say only what is true, relevant, etc.
- Subjective: Say only what you think is true, relevant, etc.

My account of the final rise relies on subjective maxims:

- Violating 'say only what you think is true' = uncertainty

7.3. Objective/subjective cooperativity

The maxims can be (and have been) defined in two ways:

- Objective: Say only what is true, relevant, etc.
- Subjective: Say only what you think is true, relevant, etc.

My account of the final rise relies on subjective maxims:

- Violating 'say only what you think is true' = uncertainty
- Violating 'say only what is true' = lying

7.3. Objective/subjective cooperativity

The maxims can be (and have been) defined in two ways:

- Objective: Say only what is true, relevant, etc.
- Subjective: Say only what you think is true, relevant, etc.

My account of the final rise relies on subjective maxims:

- Violating 'say only what you think is true' = uncertainty
- Violating 'say only what is true' = lying

But an account based on objective maxims would also work:

7.3. Objective/subjective cooperativity

The maxims can be (and have been) defined in two ways:

- Objective: Say only what is true, relevant, etc.
- Subjective: Say only what you think is true, relevant, etc.

My account of the final rise relies on subjective maxims:

- Violating 'say only what you think is true' = uncertainty
- Violating 'say only what is true' = lying

But an account based on objective maxims would also work:

- Final rise: 'For some maxim, I'm not sure whether or how I comply with it'.

End of Part II

General conclusion

General conclusion

Part I:

- If pragmatic reasoning is sensitive to attentive content

General conclusion

Part I:

- If pragmatic reasoning is sensitive to attentive content
- then exhaustivity is a conversational implicature.

General conclusion

Part I:

- If pragmatic reasoning is sensitive to attentive content
- then exhaustivity is a conversational implicature.

Part II:

- If, furthermore, the final rise conveys the violation of a maxim

General conclusion

Part I:

- If pragmatic reasoning is sensitive to attentive content
- then exhaustivity is a conversational implicature.

Part II:

- If, furthermore, the final rise conveys the violation of a maxim
- then the many readings of the final rise are predicted.

The End

Articles

- Exhaustivity through the maxim of Relation (LENLS proceedings, see staff.science.uva.nl/~westera/)
- 'Attention, I'm violating a maxim!' (submitted, available through me)

Thanks to the Netherlands Organisation for Scientific Research (NWO) for financial support; to F. Roelofsen, J. Groenendijk, C. Cummins, K. Von Fintel, A. Ettinger, J. Tyler, M. Križ, the audiences of SemDial, S-Circle (UCSC), SPE6, ICL, CISI, ESSLLI StuS, LIRA, and many anonymous reviewers for valuable comments.

Appendix. 'Embedded' implicatures

Chierchia, et al. (2008), and much subsequent discussion
(6) Which books did every student read? Every student read O. or K.L. \leadsto No student read both.

Appendix. 'Embedded' implicatures

Chierchia, et al. (2008), and much subsequent discussion
(6) Which books did every student read? Every student read O. or K.L. \leadsto No student read both.

The problem
The problem has never been the Gricean approach as such, but rather to find the right 'alternatives'.

Appendix. 'Embedded' implicatures

Chierchia, et al. (2008), and much subsequent discussion
(6) Which books did every student read?

Every student read O. or K.L. \leadsto No student read both.

The problem
The problem has never been the Gricean approach as such, but rather to find the right 'alternatives'.

In the present theory:

- The maxims are sensitive to attentive content

Appendix. 'Embedded' implicatures

Chierchia, et al. (2008), and much subsequent discussion
(6) Which books did every student read?

Every student read O. or K.L. \leadsto No student read both.

The problem
The problem has never been the Gricean approach as such, but rather to find the right 'alternatives'.

In the present theory:

- The maxims are sensitive to attentive content
- Attentive content mirrors sub-sentential structure.

Appendix. 'Embedded' implicatures

Chierchia, et al. (2008), and much subsequent discussion
(6) Which books did every student read?

Every student read O. or K.L. \leadsto No student read both.

The problem
The problem has never been the Gricean approach as such, but rather to find the right 'alternatives'.

In the present theory:

- The maxims are sensitive to attentive content
- Attentive content mirrors sub-sentential structure.
- (Hence so do the 'alternatives'.)

Appendix. 'Embedded' implicatures

Chierchia, et al. (2008), and much subsequent discussion
(6) Which books did every student read?

Every student read O. or K.L. \leadsto No student read both.

The problem
The problem has never been the Gricean approach as such, but rather to find the right 'alternatives'.

In the present theory:

- The maxims are sensitive to attentive content
- Attentive content mirrors sub-sentential structure.
- (Hence so do the 'alternatives'.)

The 'embedded' implicature of (6) is in fact predicted.

References (i)

- Banziger, T., \& Scherer, K. R. (2005). The role of intonation in emotional expressions.
- Bartels, C. (1999). The intonation of English statements and questions: a compositional interpretation.
- Büring, D. (2003). On D-Trees, Beans and B-Accents.
- Chierchia, G., Fox, D., \& Spector, B. (2008). The grammatical view of scalar impl. and the relationship between sem. and pragmatics.
- Ciardelli, I. (2009). Inquisitive semantics and intermediate logics.
- Constant, N. (2012). English Rise-Fall-Rise: A study in the Semantics and Pragmatics of Intonation.
- De Morgan, A. (1847). Formal Logic.
- Grice, H. (1975). Logic and conversation.
- Groenendijk, J., \& Stokhof, M. (1984). Studies on the semantics of questions and the pragmatics of answers.

References (ii)

- Gunlogson, C. (2008). A question of commitment.
- Mill, J.S. (1867). An Examination of Sir William Hamilton's Philosophy.
- Roberts, C. (1996). Information structure in discourse.
- Roelofsen, F. (2011). Information and attention.
- Sauerland, U. (2004). Scalar implicatures in complex sentences.
- Truckenbrodt, H. (2006). On the semantic motivation of syntactic verb movement to C in German.
- Ward, G., \& Hirschberg, J. (1985). Implicating uncertainty: the pragmatics of fall-rise intonation.
- Ward, G., \& Hirschberg, J. (1992). The influence of pitch range, duration, amplitude and spectral features on the interpretation of the rise-fall-rise intonation contour in english.
- Westera, M. (2012). Meanings as proposals: a new semantic foundation for Gricean pragmatics.

